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ABSTRACT: To verify the feasibility of the determination of the SiAH content (HC) of hydrogen silicone oil (HS-oil) with Fourier

transform near infrared (FT-NIR) spectroscopy and attenuated total reflectance (ATR)–Fourier transform infrared (FTIR) spectros-

copy combined with the partial least squares regression (PLS-R) model, HS-oil samples were synthesized from concentrated hydrosili-

cone oil (HC 5 1.4 wt %), octamethylcyclotetrasiloxane, and hexamethyldisiloxane or prepared by the dilution of concentrated

hydrosilicone oil with octamethylcyclotetrasiloxane. The FT-NIR PLS-R model (8695–4000 cm21, two principal components) was

developed from the FT-NIR spectral data, and the coefficient of determination for cross-validation (R2) and the coefficient of deter-

mination for external validation (r2) were 0.992 and 0.995, respectively. The ATR–FTIR PLS-R model (2302–2040 cm21, one principal

component) was developed from the ATR–FTIR spectral data; it produced an R2 of 0.995 and an r2 of 0.996. This study demonstrated

that the combination of FT-NIR and ATR–FTIR spectroscopy with the PLS-R model were successfully used to determine the HC of

the HS-oil. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40694.
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INTRODUCTION

Hydrogen silicone oil (HS-oil) is an important organic silicon

polymer because of its nontoxic, noncorrosive, odorless, and

nonflammable properties. It can be used for waterproofing,

mold release, defoaming, lubrication, and other applications, in

which the SiAH bond is very active and frequently used for the

combination of other organic polymer chains with organosili-

con via hydrosilylation. So, the amount of SiAH or the SiAH

content (HC) is an important index for its application. The

chemical method,1 namely, iodometry, is the most used method

for measuring the HC of HS-oil. However, it is not only costly

but also polluting and time-consuming, and the procedure is

tedious. So, the iodometry method does not meet the require-

ment of the rapid determination of bulk samples.

In the ASTM definition, near infrared (NIR) refers to electro-

magnetic wavelength from 780 to 2526 nm,2 and it was the first

nonvisible light that humans discoverd.3 NIR absorption bands

are mainly combination bands and overtones of the fundamen-

tal vibrations of CAH, NAH, and OAH groups in the mid

infrared (MIR) area. The absorption of NIR energy by organic

groups is much weaker than the comparable absorption of MIR

energy; this enables the analysis of multicomponent samples in

a nondestructive way without complicated pretreatments. The

use of multivariate statistical methods, such as partial least

squares regression (PLS-R), principal component analysis, mul-

tiple linear regression, and principal component regression, pro-

vides the possibility of establishing a relationship (i.e.,

calibration models) between the NIR spectral data and the

structural or component information of materials.

Over the years, the use of NIR spectroscopy combined with

multivariate statistical methods has increased rapidly because of

its advantages, including its nondestructiveness, rapidity, non-

polluting nature, and convenience. A number of studies has

demonstrated that NIR can be used for the determination of

the contents of water, protein, starch, fat, and so on in agricul-

tural products and food production4–18 and other areas of

life.19,20 NIR has also been applied for the measurement of aspi-

rin, water, alkaloid contents, and so on in medicines;21–24 the

quantification of the octane value, density, refractive index, and

so on in the petrochemical field;25–28 and the determination of

hydroxyl group and monomer conversion, particle size, molar
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ratio, molecular weight, polymerization degree, and so on in

the macromolecular field.29–37 In comparison, MIR spectroscopy

combined with multivariate statistical methods has also been

used in quantification analysis.12,29,38,39

In this study, the feasibility of using Fourier transform near

infrared (FT-NIR) diffuse reflectance spectroscopy and attenu-

ated total reflectance(ATR)–Fourier transform infrared (FTIR)

spectroscopy combined with the PLS-R model to determine the

HCs of HS-oil samples was investigated.

EXPERIMENTAL

Materials

Concentrated hydrosilicone oil (industrial grade, HC 5 1.4 wt %)

was purchased from Jinan Ruiyuan Chemical Reagent Co. (Jinan,

China). Octamethylcyclotetrasiloxane (D4; chemically pure rea-

gent) was supplied by Jinan Great Chemical Reagent Co. (Jinan,

China). Hexamethyldisiloxane (MM; chemically pure reagent) was

obtained from Jinan Great Chemical Reagent Co. (Jinan, China).

Trifluoromethane sulfonic acid (analytical reagent) was purchased

from Aladdin Reagent Co. (Shanghai, China). NH4HCO3 (analyti-

cal reagent) was purchased from Tianjin Guangcheng Chemical

Reagent Co. (Tianjin, China).

Preparation of the HS-Oil Samples1

Twenty-one HS-oil samples with different HCs (samples 1–13

and 50–57) were synthesized at 50–60� centigrade from concen-

trated hydrosilicone oil, D4, and MM. The mixture was heated

with trifluoromethane sulfonic acid for 6 h (see Figure 1). The

trifluoromethane sulfonic acid was neutralized with NH4HCO3,

and the low-boiling-point components were removed in vacuo.

There was a chemical equilibrium between the break and the

formation of the SiAO bonds under acidic conditions, and the

break of the SiAO bond in MM and D4 was much faster than

in concentrated hydrosilicone oil with a long-chain structure. In

contrast, the driving force of the formation of SiAO bonds in

the long-chain structure was much bigger than in the cyclic and

short-chain structures. So, the overall trend of the reaction was

that the structure [ASi(CH3)2OA]4 resulting from the ring

opening of D4 connected to the long chain of the concentrated

hydrosilicone oil with MM as the end-capping reagent.

The reference method for HC determination was the standard

iodometry method.1 HS-oil samples 14–49 were prepared by

the dilution of samples 1–13 with D4.

Collection of the FT-NIR and ATR–FTIR Spectra

FT-NIR spectra (spectral resolution 5 4 cm21, wave-number range

5 12,000–4000 cm21, gold was the standard reference, 16 scans)

were recorded at ambient temperature with an FT-NIR

Figure 1. Reaction equations for the preparation of HS-oil samples with

various HCs.

Figure 2. FT-NIR spectra of HS-oil samples 1–13 (10,000–4000 cm21).

Figure 3. FT-NIR spectra of HS-oil samples 1–13 (5500–4800 cm21).

Figure 4. FT-NIR spectra of HS-oil samples 1–13 (4600–4250 cm21).
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spectrometer (TENSOR 37, Bruker Optics China) operated in dif-

fuse reflection mode. To get the NIR spectra, the samples were put

into a cuvette (outer diameter 5 22 mm) together with a diffuse

reflecting device with precise spacers; this resulted in an optical

path length of 2 mm. An NIR integrating sphere was used to collect

reflected energy from a spherical perspective and, thereby, captured

a complete and quantitative response from the sample. Each sam-

ple was measured separately four times to minimize deviation.

ATR–FTIR spectra (spectral resolution: 4 cm21, wave-number

range 5 4000–400 cm21, 16 scans) were collected with MIRacle

single-reflection horizontal ATR with ZnSe crystals (Bruker Optics

China, incident angle 5 45�). Each sample was measured once.

Calibration Model Development

Multivariate statistical analysis was performed with The

Unscrambler 9.7 software. The FT-NIR spectra and ATR–FTIR

spectra of the samples were imported into The Unscrambler as

dependent variables. The HCs of the samples were imported as

independent variables. All 57 samples were divided into calibra-

tion set samples (samples 1–49) to develop the PLS-R models

and the external validation samples (samples 50–57) to validate

the PLS-R models. The HCs all ranged from 0.1 to 1.4 wt %.

The FT-NIR spectra of the calibration set samples with high-

frequency noises ranging from 8696 to 4000 cm21 removed and

without preprocessing were used to develop the FT-NIR PLS-R

model. The ATR–FTIR spectra of the characteristic absorption

of the SiAH stretching vibrations of the calibration set samples

ranging from 2302 to 2040 cm21 were used to develop the

ATR–FTIR PLS-R model.

The cross-validation procedure was introduced to the development

of the PLS-R models; this means one sample was left out to be

used as the prediction set each time, and the other 48 samples were

used as the calibration set for the PLS-R model. Then, the HC of

the left out sample was predicted by the model on the basis of the

calibration set. The procedure was automatically repeated by the

software from the first sample to the last one to test whether the

model would be obviously affected by the removal of the left out

sample.

The PLS-R models were assessed by the coefficient of determi-

nation for the cross-validation (R2), defined with eq. (1), and

the root mean square error of cross-validation (RMSE), defined

with eq. (2). In a regression model, R2 is the numerical coeffi-

cient that expresses the link between the variation in the predic-

tors and the variation in the response. It is used to indicate the

fit of the data. RMSE is a measurement of the average difference

between the predicted and measured values, and it also can be

interpreted as the average modeling error:
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where yis and yip are the HCs of the calibration sample i

obtained by standard iodometry and the PLS-R model, respec-

tively; n is the number of samples; and yn is the average of the

HCs obtained by standard iodometry. The regression coeffi-

cients of the calibration model show the regions of the spec-

trum that correlated with HC. The optimal number of principal

components was determined in a function of the first local min-

imum in the RMSE curve, and the prediction was calculated

with the optimal principal components.

External Validate of the Calibration Model

The external validation set samples 50–57 were not included in

the calibration model and were used to validate the calibration

models. The FT-NIR and ATR–FTIR spectral data of these sam-

ples were collected under the same conditions with the calibra-

tion set samples; each sample was measured once. The

predicted results were evaluated by the coefficient of determina-

tion for the external validation (r2) and the root mean square

error for the external validation (RMSEEV).

RESULTS AND DISCUSSION

FT-NIR and ATR–FTIR Spectra

NIR absorption bands are associated with the combination and

overtone bands of the fundamental MIR vibrations of the

Figure 5. ATR–FTIR spectra of HS-oil samples 1–49 (4000–600 cm21).

Figure 6. ATR–FTIR spectra of HS-oil samples 1–49 (2300–2000 cm21).
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hydric groups, such as CAH, OAH, SAH, and NAH. HS-oil

contains many SiAH and CAH groups, and their absorptions

are located at different wave numbers in the NIR region. The

ratio of SiAH and CAH varies in HS-oil samples with different

HCs, which can be reflected in NIR spectra. There are subtle

differences, although the NIR spectra of all of the samples were

quite similar, as shown in Figure 2. The absorption in

5500–4800 (Figure 3) and 4600–4250 cm21 (Figure 4) increased

obviously with increasing HC. Figure 5 shows the full-range

ATR–FTIR spectra of the HS-oil samples. The peak at

2162 cm21, without being overlapped, represented the SiAH

stretching vibration, which also increased with increasing HC,

and is shown more clearly in Figure 6 from 2300 to 2000 cm21.

There was a certain level of band shift due to the different

chemical environments of the SiAH bonds, which resulted from

the uncontrolled distribution of SiAH groups but within a rea-

sonable range.1 The peak at 2962 and 2904 cm21 represented

the stretching vibrations of CAH from SiACH3, and that at

1258 cm21 was associated with the symmetric deformation

vibrations of SiACH3. The peaks at 1057 and 1014 cm21 were

assigned to the stretching vibrations of SiAO. The peak at

878 cm21 was attributed to the bending vibrations of SiAH.

The peaks at 833 and 765 cm21 belonged to the rocking vibra-

tions of ACH3 from SiAMe2 and SiAMe, respectively. The peak

at 791 cm21 was assigned to the stretching vibrations of SiAC.1

So, the HS-oils were successfully synthesized.

Calibration Models

Model statistics of the measured and predicted values of the

cross-validation results of the HCs are presented in Table I. The

R2 values of the FT-NIR PLS-R model and ATR–FTIR PLS-R

model were pretty high, more than 0.99; this showed a good fit of

the data. The RMSEs of both models were very low, smaller than

0.035 wt %. Figures 7 and 8 show the performance of the FT-NIR

PLS-R model (two principal components) and ATR–FTIR PLS-R

model (one principal component) for cross-validation. NIR

absorption bands are associated with the combination and over-

tone bands. The absorption band of SiAH was hardly to find. As

a result, a broad wave-number range, with high-frequency noise

from 8696 to 4000 cm21 removed, was chosen to develop the FT-

Table I. Model Statistics for the Cross-Validation and External Validation of the HCs in the HS-Oil Samples

Model Parameters of cross-validation
Parameters of

external validation

Na

Number of
principal
components

Wave-number
range (cm21

) R2
RMSE
(wt %) SECb

Bias
(wt %)c

Offset
(wt %)d ne r2

RMSEEV
(wt %)

FT-NIR model 49 2 8696–4000 0.992 0.0342 0.0343 0.0001 0.0066 8 0.995 0.0226

ATR–FTIR model 49 1 2302–2040 0.995 0.0286 0.0289 0.0003 0.0048 8 0.996 0.0189

a N, number of calibration set samples.
b SEC, standard error of cross -validation.
c Systematic difference between the predicted and measured values.
d Point at which a regression line crosses the ordinate (y axis).
e n, number of external set samples.

Figure 7. Measured HCs versus predicted HCs for calibration set samples

1–49 by the FT-NIR PLS-R model (cross-validation).

Figure 8. Measured HCs versus predicted HCs for calibration set samples

1–49 by the ATR–FTIR PLS-R model (cross-validation).
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NIR PLS-R model. But in the MIR area, the absorption band of

SiAH was associated with the peak at 2162 cm21, so, a narrow

wave-number range from 2302 to 2040 cm21 was used to develop

the ATR–FTIR PLS-R model, and the high R2 indicated that the

band shifts had little impact on the model. Compared to the FT-

NIR PLS-R model with two principal components, the ATR–

FTIR PLS-R model with only one principal component had the

higher R2, and the lower RMSE, that is, because the FT-NIR PLS-

R model was based on a broader wave-number range. This may

have consisted of some useless information, whereas the ATR–

FTIR PLS-R model was based on the only one absorption peak,

which represented exactly the stretching vibrations of SiAH.

Figures 9 and 10 indicate the regression coefficients of the

absorption intensities at the wave numbers that the FT-NIR

(8696–4000 cm21) and ATR–FTIR (2302–2040 cm21) PLS-R

models were based on. In Figure 9, the ranges 5500–4800 and

4600–4250 cm21, which express the obvious differences in Fig-

ures 3 and 4, showed positive regression coefficients, respec-

tively. This was likely because the absorption bands of SiAH

were in these two ranges. The CAH of the HS-oil displayed a

negative correlation in the remaining wave-number range. As

shown in Figure 10, there was only one positive peak in the

range 2302–2040 cm21, where the exact absorption peak of

SiAH stretching was (shown in Figure 6), and this showed a

positive regression coefficient.

External Validation of the Calibration Models

The external validation set of samples 50–57 were used to vali-

date the previous two PLS-R models; the HCs of these samples

were previously determined by standard iodometry and ranged

Figure 10. Regression coefficients of the ATR–FTIR PLS-R model for the

HCs of HS-oil.

Figure 11. Measured HCs versus predicted HCs for external validation set

samples 50–57 by the FT-NIR PLS-R model

Figure 12. Measured HCs versus predicted HCs for external validation set

samples 50–57 by the ATR–FTIR PLS-R model.

Figure 9. Regression coefficients of the FT-NIR PLS-R model for the HCs

of HS-oil.
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from 0.199 to 1.157 wt %. The measured versus predicted val-

ues of the HCs with deviation are shown in Figures 11 and 12.

The statistics of the prediction results are shown in Table I. The

predicted and measured HCs were highly correlated with an r2

of 0.995 and an RMSEEV of 0.0226 wt % for the FT-NIR PLS-

R model and an r2 of 0.996 and an RMSEEV of 0.0189 wt %

for the ATR–FTIR PLS-R model. These results confirm that the

rapid prediction of HC by the FT-NIR and ATR–FTIR PLS-R

models is feasible.

CONCLUSIONS

The aim of this study was to analyze the feasibility of the HC

determination of HS-oil samples by a combination of FT-NIR

and ATR–FTIR with PLS-R models. The FT-NIR PLS-R and

ATR–FTIR PLS-R models were successfully used to determine

the HCs of the HS-oil samples, and this prevented pollution

and time-consuming and troublesome issues, and the rapid

measurement of HC was achieved. The validation results dem-

onstrated that FT-NIR and ATR–FTIR spectroscopy combined

with multivariate statistical methods were accurate and practical

for the rapid analysis of the HCs of the HS-oil.
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